2 research outputs found

    Proactive techniques for correct and predictable Internet routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 185-193).The Internet is composed of thousands of autonomous, competing networks that exchange reachability information using an interdomain routing protocol. Network operators must continually reconfigure the routing protocols to realize various economic and performance goals. Unfortunately, there is no systematic way to predict how the configuration will affect the behavior of the routing protocol or to determine whether the routing protocol will operate correctly at all. This dissertation develops techniques to reason about the dynamic behavior of Internet routing, based on static analysis of the router configurations, before the protocol ever runs on a live network. Interdomain routing offers each independent network tremendous flexibility in configuring the routing protocols to accomplish various economic and performance tasks. Routing configurations are complex, and writing them is similar to writing a distributed program; the (unavoidable) consequence of configuration complexity is the potential for incorrect and unpredictable behavior. These mistakes and unintended interactions lead to routing faults, which disrupt end-to-end connectivity. Network operators writing configurations make mistakes; they may also specify policies that interact in unexpected ways with policies in other networks.(cont.) To avoid disrupting network connectivity and degrading performance, operators would benefit from being able to determine the effects of configuration changes before deploying them on a live network; unfortunately, the status quo provides them no opportunity to do so. This dissertation develops the techniques to achieve this goal of proactively ensuring correct and predictable Internet routing. The first challenge in guaranteeing correct and predictable behavior from a routing protocol is defining a specification for correct behavior. We identify three important aspects of correctness-path visibility, route validity, and safety-and develop proactive techniques for guaranteeing that these properties hold. Path visibility states that the protocol disseminates information about paths in the topology; route validity says that this information actually corresponds to those paths; safety says that the protocol ultimately converges to a stable outcome, implying that routing updates actually correspond to topological changes. Armed with this correctness specification, we tackle the second challenge: analyzing routing protocol configurations that may be distributed across hundreds of routers.(cont.) We develop techniques to check whether a routing protocol satisfies the correctness specification within a single independently operated network. We find that much of the specification can be checked with static configuration analysis alone. We present examples of real-world routing faults and propose a systematic framework to classify, detect, correct, and prevent them. We describe the design and implementation of rcc ("router configuration checker"), a tool that uses static configuration analysis to enable network operators to debug configurations before deploying them in an operational network. We have used rcc to detect faults in 17 different networks, including several nationwide Internet service providers (ISPs). To date, rcc has been downloaded by over seventy network operators. A critical aspect of guaranteeing correct and predictable Internet routing is ensuring that the interactions of the configurations across multiple networks do not violate the correctness specification. Guaranteeing safety is challenging because each network sets its policies independently, and these policies may conflict. Using a formal model of today's Internet routing protocol, we derive conditions to guarantee that unintended policy interactions will never cause the routing protocol to oscillate.(cont.) This dissertation also takes steps to make Internet routing more predictable. We present algorithms that help network operators predict how a set of distributed router configurations within a single network will affect the flow of traffic through that network. We describe a tool based on these algorithms that exploits the unique characteristics of routing data to reduce computational overhead. Using data from a large ISP, we show that this tool correctly computes BGP routing decisions and has a running time that is acceptable for many tasks, such as traffic engineering and capacity planning.by Nicholas Greer Feamster.Ph.D

    Adaptive delivery of real-time streaming video

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 87-92).While there is an increasing demand for streaming video applications on the Internet, various network characteristics make the deployment of these applications more challenging than traditional Internet applications like email and the Web. The applications that transmit data over the Internet must cope with the time-varying bandwidth and delay characteristics of the Internet and must be resilient to packet loss. This thesis examines these challenges and presents a system design and implementation that ameliorates some of the important problems with video streaming over the Internet. Video sequences are typically compressed in a format such as MPEG-4 to achieve bandwidth efficiency. Video compression exploits redundancy between frames to achieve higher compression. However, packet loss can be detrimental to compressed video with interdependent frames because errors potentially propagate across many frames. While the need for low latency prevents the retransmission of all lost data, we leverage the characteristics of MPEG-4 to selectively retransmit only the most important data in order to limit the propagation of errors. We quantify the effects of packet loss on the quality of MPEG-4 video, develop an analytical model to explain these effects, and present an RTP-compatible protocol-which we call SR-RTP--to adaptively deliver higher quality video in the face of packet loss. The Internet's variable bandwidth and delay make it difficult to achieve high utilization, Tcp friendliness, and a high-quality constant playout rate; a video streaming system should adapt to these changing conditions and tailor the quality of the transmitted bitstream to available bandwidth. Traditional congestion avoidance schemes such as TCP's additive-increase/multiplicative/decrease (AIMD) cause large oscillations in transmission rates that degrade the perceptual quality of the video stream. To combat bandwidth variation, we design a scheme for performing quality adaptation of layered video for a general family of congestion control algorithms called binomial congestion control and show that a combination of smooth congestion control and clever receiver-buffered quality adaptation can reduce oscillations, increase interactivity, and deliver higher quality video for a given amount of buffering. We have integrated this selective reliability and quality adaptation into a publicly available software library. Using this system as a testbed, we show that the use of selective reliability can greatly increase the quality of received video, and that the use of binomial congestion control and receiver quality adaptation allow for increased user interactivity and better video quality.by Nicholas G. Feamster.M.Eng
    corecore